
January, 2002

Advisor Answers

Keyboard Access to Context Menus

VFP 7.0/6.0/5.0

Q: I've added a right-click menu to most of my forms, but I noticed
that it doesn't work when the user hits the right-click menu button on

the keyboard. How can I make that work, too?

–Advisor DevCon attendee

A: Most current applications use context menus (also known as
shortcut or right-click menus) to provide users with a quick list of

available options. No doubt you've implemented yours by adding code
to the RightClick method of your forms and controls.

As you've discovered, however, pressing the context menu key on a
Windows keyboard doesn't fire the RightClick method. It makes sense

when you think about it, of course, but there are a few places where
keyboard and mouse actions are mixed in VFP. (For example, clicking

a button with the Cancel attribute puts CHR(27) into the keyboard

buffer.) The key to solving this problem turns out to be the key
combination that mimics that key. Pressing Shift-F10 has the same

effect as pressing the context menu key. In most applications, that's
opening a context menu.

How does this help? Once you know what keystrokes are involved, you
can add code to the KeyPress method of the form or control to respond

to it. KeyPress receives two parameters: a key code, and a value that
indicates which, if any, of Ctrl, Shift and Alt are pressed. The

parameter statement for the method is:

LPARAMETERS nKeyCode, nShiftAltCtrl

The second parameter is additive, since more than one of those keys
may be pressed. A value of 1 indicates that the Shift key was pressed,

2 indicates that the Ctrl key was pressed, and 4 indicates that the Alt

key was pressed. Any other value indicates that multiple special keys
were pressed – for example, 3 means that both Shift and Ctrl were

pressed.

The first parameter is interesting, because it's not as simple as the

ASCII value for the specified key. The parameter passed varies with

the special keys. For example, KeyPress receives 97 for "a" and 65 for

"A", as you'd expect, but it also receives 1 for Ctrl-a and 30 for Alt-a.
You'll find the complete list of key codes in the VFP Help entry for

INKEY().

A quick look at the chart there indicates that the key code for Shift-

F10 is 93 and, of course, the nShiftAltCtrl value for that key is 1, since
only Shift should be pressed. We can use this information in the

KeyPress method to take action when Shift-F10 is pressed. More
importantly, Windows converts the context menu key to Shift-F10

before passing it on to applications. So, code like the following in
KeyPress gives you what you need:

LPARAMETERS nKeyCode, nShiftAltCtrl

IF nKeyCode = 93 and nShiftAltCtrl = 1
 DO MyContextMenu.MPR
ENDIF

Which KeyPress method should this code go in? That depends on the
situation. If every control has a unique context menu or the controls

have a different context menu than the form itself, you need to put
code like this in the controls' KeyPress methods.

However, if the same context menu is called for all the controls and for
the form itself, you can save a lot of work by putting the code in the

form's KeyPress method and setting the form's KeyPreview property to
.T. That setting indicates that any keystroke on the form should be

sent first to the form-level KeyPress method. After that method is

finished, the individual control's KeyPress method is called.

There's also a design issue here. Presumably, whatever you do when

Shift-F10 or the context menu button is pressed is the same as when
the user right-clicks. While you can put the same code (DO

MyContextMenu.MPR, in the example above) in both RightClick and
KeyPress, it's a better idea to have both of them call a method that

handles right-clicks. That way, if the desired behavior changes, you
only have to modify code in one place. Add a method to the form or

control with a name like HandleRightClick and call it from both
RightClick and KeyPress.

The desirability of this approach becomes more obvious when every
control on the form and the form itself have the same context menu.

Clearly, you don't want to DO SomeMenu.MPR in every RightClick
method; maintenance of such a form is a nightmare. Your first instinct

might be to have the RightClick methods of the controls call

ThisForm.RightClick and let the form-level method call the menu. But

when you add the keyboard approach into the mix, it becomes clear
that we're not just talking about RightClick anymore. In this case,

having every RightClick method and the form-level KeyPress method
call ThisForm.HandleRightClick results in much easier maintenance.

This month's Professional Resource CD contains an example form,
Shortcut.SCX, that demonstrates the use of a single context menu for

the form and its controls. It uses the menu EdtShort.MNX that's
included with the Solutions Samples – you must have the samples

installed for the example to work. (I used that menu just because it
was available-you probably wouldn't make that set of options available

at the form level in a real application.)

–Tamar

